RE Reunion

基本解释留尼茨角

网络释义

1)RE Reunion,留尼茨角2)Leibniz,莱布尼茨3)iso-camphenilol,彝茨尼醇4)iso-camphenilone,异茨尼酮5)Arthur Schnitzler (1862~1931),施尼茨勒,A.6)Moniezia,莫尼茨绦虫

用法和例句

Leibniz and the Debate of Inventor s Right of Calculus;

莱布尼茨与微积分发明权之争——纪念莱布尼茨诞生360周年

Re-exploration on the Scientific Connotation and Value of Leibniz s Marble Figure Hypothesis;

再探莱布尼茨大理石花纹说的科学内涵和价值

On Leibniz s Possibility Paradigm;

论莱布尼茨的可能性范式

Objective To explore the method of making the clear structure,bright-color and not faded easily stained adult specimen of Moniezia.

目的制作结构清晰、颜色鲜亮、不易褪色的莫尼茨绦虫成虫染色标本。

Leibnitz came along and turned Newton's definition upside down.

莱布尼茨把牛顿的定义颠倒了过来。

Studying on Leibniz s Understanding to Confucianism and Christianity Theology;

莱布尼茨对儒学与基督教神学的会通

Mirror of the Universe:Leibnitz and Intercultural Hermeneutics;

宇宙之镜:莱布尼茨与跨文化诠释学

Leibniz-Wolff System and German Enlightenment;

莱布尼茨-沃尔夫体系与德国启蒙运动

Leibniz s Theory of Petites Perception & Its Historical Influence;

莱布尼茨的微知觉理论及其历史影响

Leibniz’s Philosophical thought in his science and technology

莱布尼茨的科学、技术中的哲学思想

Leibniz s Philosophy and Phenomenology--From Leibniz to Husserl and Heidegger;

略论莱布尼茨哲学与现象学的关系——从莱布尼茨到胡塞尔与海德格尔

This very slowly converging series was known to Leibniz in 1674.

这个收敛很慢的级数是莱布尼茨在1674年得到的。

Re-exploration on the Scientific Connotation and Value of Leibniz s Marble Figure Hypothesis;

再探莱布尼茨大理石花纹说的科学内涵和价值

Individuals and Space--Affinity between Leibniz and Chinese Philosophy;

个体与空间——试析莱布尼茨与中国哲学的亲和性

Two kingdoms in nature--a study of Leibniz’s natural philosophy;

自然界中的两个王国——莱布尼茨自然哲学初探

A Monadic Perspective on Leibniz s Research into the Subject of Knowledge;

从单子特性看莱布尼茨对知识主体的探究

Logical Differentiation of World;

世界的逻辑区分——论莱布尼茨的差异逻辑

The Effect of "Concept of Innate" by Leibniz on Acknowledgement;

莱布尼茨的"天赋观念"在认识形成中的作用

Leibniz's Ideas of Library Science and Their Basis of Science

莱布尼茨的图书馆学思想及其科学基础

Two Tentative Images on Universal Language:A Comparative Study of Leibniz's and Frege's Attempts

普遍语言的两个设想——莱布尼茨与弗雷格的尝试

Leibniz discovered that any number of symbols could be formed from patterns of these two marks.

莱布尼茨发现,任何数目的符号都可以由这两种记号的图案所组成。

Application of Newton-Lebniz formula in plane curve integral and space curve integral.;

牛顿-莱布尼茨公式在平面曲线积分和空间曲线积分中的应用